top
Please input keywords
Order
*Country
United States
China
France
Germany
Netherlands
United Kingdom
Japan
South Korea
Israel
Australia
Hong Kong, China
New Zealand
Russia
Singapore
Taiwan, China
India
Aland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antarctica
Antigua & Barbuda
Argentina
Armenia
Aruba
Ascension Island
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Canary Islands
Cape Verde
Caribbean Netherlands
Cayman Islands
Central African Republic
Ceuta & Melilla
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo - Brazzaville
Congo - Kinshasa
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Diego Garcia
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
French Southern Territories
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Italy
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macau, China
Macedonia
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Mexico
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar (Burma)
Namibia
Nauru
Nepal
New Caledonia
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Territories
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Poland
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Georgia & South Sandwich Islands
South Sudan
Spain
Sri Lanka
St. Barthélemy
St. Helena
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Swaziland
Sweden
Switzerland
Syria
Tajikistan
Tanzania
Thailand
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tristan da Cunha
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
United Arab Emirates
United Nations
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Vietnam
Wallis & Futuna
Western Sahara
Yemen
Zambia
Zimbabwe
*Province
*City
*Name
*Telephone
*Company
*Position
*Email
*Verification code
*Verification Code
B-NDG hSIRPA/hCD47 mice
Strain Name 

NOD.CB17-Prkdcscid Il2rgtm1Bcgen 

Sirpatm1(SIRPA)Bcgen Cd47 tm1(CD47)Bcgen/Bcgen

Common Name 

B-NDG hSIRPA/hCD47 mice

Background B-NDG Catalog number  110603
Related Genes 

SIRPα (signal regulatory protein alpha)

CD47

NCBI Gene ID
19261,16423

Mice Description


Signal regulatory protein α (SIRPα) is a transmembrane protein with an extracellular region comprising three Ig-like domains and a cytoplasmic region containing immunoreceptor tyrosine-based inhibition motifs which mediate binding of the protein tyrosine phosphatases SHP1 and SHP2. SIRPα is especially abundant in myeloid cells such as macrophages and dendritic cells (DC), whereas it is expressed at very low levels in T, B, NK, and NK T cells. SIRPα inhibits phagocytosis in macrophages upon interacting with its ligand CD47, which is commonly upregulated on the surface of malignant cells. Thus, antibodies that block the CD47-SIRPα interaction should enhance macrophage phagocytosis in the tumor microenvironment and inhibit tumor growth, making anti-SIRPα and anti-CD47 antibodies promising tools for cancer immunotherapy.

Biocytogen developed the B-NDG hSIRPA/hCD47 mice, for evaluation the in vivo efficacy of SIRPα antibodies, or the in vivo efficacy of other antibodies in combination with SIRPα antibodies. These mice are B-NDG mouse background (completely lacking mature T, B and NK cells and were deficient in cytokine signaling) with SIRPα and CD47 IgV domain replaced by human homologous. In homozygous B-NDG hSIRPA/hCD47 mice, mouse SIRPα and CD47 were absent and only human protein expression was detected. B-NDG hSIRPA/hCD47 mice paired with genetically modified Raji-luc cancer cells were used to evaluate the efficacy of combination antibodies targeting SIRPα and other targets. The results showed that the combination of antibodies could effectively control tumor growth. B-NDG hSIRPA/hCD47 mice are promising models for preclinical in vivo pharmacodynamic assessment of SIRPα antibodies in combination with other targets or related bispecific antibodies.


Background


Anti-CD47 mechanisms of cancer cell killing


from clipboard


Anti-CD47 mechanisms of cancer cell killing. A. CD47-SIRPα interaction blocks macrophage phagocytosis of cancer cells. B. Treatment of cancer cells treated with anti-CD47 Ab leads to type-III PCD (actin rearrangement, mitochondrial swelling and damage,exposure of phosphatidylserine on plasma membrane) along with induction of phagocytosis by macrophage.

Russ, A. et al. Blocking "don't eat me" signal of CD47-SIRPalpha in hematological malignancies, an in-depth review. Blood reviews 32, 480-489, doi:10.1016/j.blre.2018.04.005 (2018).


Protein expression analysis (Homozygous mice)

from clipboard

Species specific SIRPα expression analysis in B-NDG hSIRPA/hCD47 mice by flow cytometry. (A) Peritoneal lymphocyte and (B) Splenocytes from B-NDG and homozygous B-NDG hSIRPA/hCD47 mice were analyzed by flow cytometry with anti-SIRPα antibodies. Mouse SIRPα was detectable in C57BL/6, B-NDG and homozygous B-NDG hSIRPA/hCD47 mice. This anti-mouse SIRPα antibody also cross reacts with human SIRPα. Human SIRPα was exclusively detectable in homozygous B-NDG hSIRPA/hCD47 but not C57BL/6  or B-NDG mice.

from clipboard


Species specific CD47 expression analysis in B-NDG hSIRPA/hCD47 mice by flow cytometry. Splenocytes from C57BL/6, B-NDG and homozygous B-NDG hSIRPA/hCD47 mice were analyzed by flow cytometry with anti-CD47 antibodies. Mouse CD47 was detectable in C57BL/6 and B-NDG mice. Human CD47 was exclusively detectable in homozygous B-NDG hSIRPA/hCD47 but not C57BL/6  or B-NDG mice.


Combination therapy of anti-human CD20 antibody with anti-human SIRPA antibody



Antitumor activity of anti-human CD20 antibody with anti-human SIRPA antibody in B-NDG hSIRPA/hCD47 mice. (A) hCD20 antibody combined with hSIRPA antibody inhibited B-luciferase-GFP Raji tumor growth in B-NDG hSIRPA /hCD47 mice. Human B-luciferase-GFP Raji cells (B lymphocytes) (5.0E+05) were inoculated into homozygous B-NDG hSIRPA /hCD47 mice (female, 10-week-old, n=5). Mice were grouped when the fluorescence intensity reached approximately 3.5E6 p/sec, at which time they were treated with hCD20, hSIRPA or hCD20 plus hSIRPA antibodis (in house) with doses and schedules indicated in panel A. (B) Body weight changes during treatment. As shown in panel A, the combination of hSIRPA and hCD20 antibodies shows more inhibitory effects than individual groups. Values are expressed as mean ± SEM.



Summary

  1. Species specific SIRPα expression analysis in B-NDG hSIRPA/hCD47 mice by flow cytometry. Human SIRPα was exclusively detectable in homozygous B-NDG hSIRPA/hCD47 mice.
  2. Species specific CD47 expression analysis in B-NDG hSIRPA/hCD47 mice by flow cytometry. Human CD47 was exclusively detectable in homozygous B-NDG hSIRPA/hCD47 mice.
  3. Combination of hSIRPA and hCD20 antibodies shows more inhibitory effects than individual groups in B-NDG hSIRPA/hCD47 mice.